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Abstract

Text-to-Video generation, which utilizes the provided text
prompt to generate high-quality videos, has drawn increas-
ing attention and achieved great success due to the develop-
ment of diffusion models recently. Existing methods mainly
rely on a pre-trained text encoder to capture the semantic in-
formation and perform cross attention with the encoded text
prompt to guide the generation of video. However, when it
comes to complex prompts that contain dynamic scenes and
multiple camera-view transformations, these methods can not
decompose the overall information into separate scenes, as
well as fail to smoothly change scenes based on the corre-
sponding camera-views. To solve these problems, we pro-
pose a novel method, i.e., Modular-Cam. Specifically, to bet-
ter understand a given complex prompt, we utilize a large
language model to analyze user instructions and decouple
them into multiple scenes together with transition actions. To
generate a video containing dynamic scenes that match the
given camera-views, we incorporate the widely-used tempo-
ral transformer into the diffusion model to ensure continuity
within a single scene and propose CamOperator, a modular
network based module that well controls the camera move-
ments. Moreover, we propose AdaControlNet, which utilizes
ControlNet to ensure consistency across scenes and adap-
tively adjusts the color tone of the generated video. Extensive
qualitative and quantitative experiments prove our proposed
Modular-Cam’s strong capability of generating multi-scene
videos together with its ability to achieve fine-grained con-
trol of camera movements. Generated results are available at
https://modular-cam.github.io.

Introduction
Via training on large-scale text-image datasets, Text-to-
Image (T2I) generation (Rombach et al. 2022; Ramesh et al.
2022; Saharia et al. 2022; Ruiz et al. 2023; Avrahami,
Lischinski, and Fried 2022) based on diffusion process has
achieved great attention in generating high-quality images
with increasing controllability. Due to the significant suc-
cess of T2I models, many researchers (Ho et al. 2022b,a;
Blattmann et al. 2023a; Lu et al. 2023; Chen et al. 2024d,c)
have made efforts to take temporal information into con-
siderations for Text-to-Video (T2V) generation. Based on
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(a) Static camera-view. Generated by AnimateDiff.

(b) Inconsistentcy, mixed scenes. Generated by StreamingT2V.

(c) Generated by this work, which best follows the user instruction.

Figure 1: Generated results based on instruction “Beginning
with a beach scene, the camera gradually draws in closer
as waves lap against the reef. Then the camera slowly pans
right and a large area of sea is revealed”. In Figure 1a, the
video footage is almost static, while in Figure 1b, the scene
transitions show abrupt changes, and the scenes are mixed.
Figure 1c shows the results of our proposed model.

the specific text prompt, T2V models have demonstrated re-
markable capability of generating videos that are smooth,
photo-realistic, and semantically coherent.

However, existing works heavily rely on the text encoder
to guide the process of generation through capturing seman-
tic information. Due to the limitation of the pre-trained en-
coder, it is difficult for them to understand the temporal in-
formation hidden in the complex text prompts which contain
dynamic scenes changes and multiple camera-view transfor-
mations. Therefore, these models are not able to disentan-
gle the information of different scenes, failing to sequen-
tially generate these distinct scenes in the prescribed order of
camera transformations. Consequently, the generated videos
tend to only have a limited amount of motions as well as
entangled scenes. Besides, current works mainly focus on
generating short videos with merely 16 to 24 frames. Thus,
these videos can hardly incorporate all the scenes or char-
acterize the process of the camera transformations between
adjacent ones. Although some works (Henschel et al. 2024)
adopt an autoregressive method, they fail to achieve fined



control of the camera movements, suffering from color dis-
tortion and abrupt transitioning, which is destructive to the
realism of the videos.

For instance, consider an instruction shown in Figure 1,
which consists of three generated videos. The instruction
can be decomposed into two scenes, i.e., i) Beach, waves
lap against the reef and ii) large area of sea, with corre-
sponding transition actions ZoomIn and PanRight. Figure 1a
and Figure 1b demonstrate the lack of fined control of cam-
era movements, as well as inconsistency across multiple
scenes with mixed environments and objects, respectively.
Figure 1c shows the results of our proposed method, which
best follows the instructions. Solving the above problems is
challenging since it requires a deep understanding of the in-
structions and thorough control of the generated content.

To tackle the challenge, in this work we present a novel
Modular-Cam framework to address the aforementioned
problems. Specifically, to provide a deep understanding of
the user instructions, we propose an LLM-Director which
utilizes an LLM to analyze the instructions and decompose
them into multiple scenes and transition actions. The ob-
tained disentangled information is crucial for the genera-
tion of individual scenes and entire videos. Based on T2I
diffusion models, we conduct a base video generator by in-
serting temporal transformer layers, transferring information
across frames, and maintaining the continuity of the gener-
ated video within a single scene. We further propose a Cam-
Operator module, which is a series of LoRA layers added on
the base generator to ensure fine-grained control of the cam-
era movements. For each motion pattern, i.e., ZoomIn, Pan-
Left, etc., a corresponding CamOperator module is trained.
LLM will select the particular CamOperator module from
the operation pool based on the transition action it acquires.
Besides, these CamOperators can function as modular com-
ponents. For complex camera-view transformations, it is not
necessary to retrain each of the CamOperators but rather uti-
lize the existing modular operators through their combina-
tions. Benefitting from the modularity, we can easily plug
them in at different situations, which greatly enhances the
scalability of the model. To improve the consistency across
multiple scenes, we adopt an autoregressive method and pro-
pose AdaControlNet, which introduces the ending frame of
the last scene as the control information for the generation
of the current scene and adaptively adjusts the color tone of
the videos. Consequently, guided by the last scene, the tran-
sition between adjacent scenes will be smooth. We concate-
nate the video clips for each scene sequentially, deriving the
final multi-scene dynamic camera-view video, which com-
pletes the end-to-end procedure.

In summary, our contributions can be listed as follows:

• We propose Modular-Cam, which is capable of gen-
erating high-quality multi-scene dynamic camera-view
videos, ensuring consistency across multiple scenes, and
providing a modular method to achieve fine-grained con-
trol of the contents and camera movements in the video.

• We propose to use LLM to parse multi-scene involved
complicated user instructions, extracting scene descrip-
tions and transition actions, and presenting an end-to-end

procedure of generating multi-scene dynamic camera-
view videos with modular CamOperators.

• We conduct extensive qualitative and quantitative exper-
iments to verify the strong generating ability of the pro-
posed Modular-Cam method.

Related Work
Text-to-Video Diffusion Models
T2V generation has become popular recently, with large-
scale video datasets such as WebVid-10M (Bain et al. 2021)
that include about ten million video-text pairs collected from
the Internet. Video Diffusion Model (Ho et al. 2022b) is
one of the pioneering works in this field which extends a
standard text-to-image diffusion model. However, the videos
generated have poor resolution. Other works (Singer et al.
2022; Ho et al. 2022a; Blattmann et al. 2023b; Chen et al.
2024b,a; Zhang et al. 2024) improve the quality through
video enhancement, specifically by using spatial or tem-
poral upsampling. On this basis, AnimateDiff (Guo et al.
2023b) proposes using a temporal self-attention mechanism
to improve frame consistency in a simple and effective way.
SparseCtrl (Guo et al. 2023a) further introduces a Control
Encoder, adding condition images to the control informa-
tion. However, many issues remain, such as style-shifting.
ModelScopeT2V (Wang et al. 2023b) ensures the consis-
tency of generated videos and the smoothness of object mo-
tion within them by incorporating spatial-temporal aware-
ness blocks. Nonetheless, the videos generated by the afore-
mentioned works are still limited in length (mostly about 16
frames), making them more like animated images rather than
full-fledged videos.

To generate longer videos, Text2Video-Zero (Khacha-
tryan et al. 2023) still relies on a text-to-image diffusion
model and incorporates cross-attention from each frame to
the first frame. However, as the number of frames increases,
the quality of the generated videos deteriorates, and the mo-
tion in the videos remains elementary even static. Gen-L
(Wang et al. 2023a) introduces the concept of multi-text,
suggesting that a long video may require multiple textual
descriptions. FreeNoise (Qiu et al. 2023) adopts a method
that requires no additional training, in which it manipu-
lates the initial noise of the diffusion model so that each
frame shares a small portion of it and introduces an inter-
frame cross-attention mechanism. StreamingT2V (Henschel
et al. 2024) employs an autoregressive approach, decompos-
ing long video generation into the generation and stitching
of multiple short videos. However, this often results in se-
vere jitter in the visuals, and abrupt transitions may occur
between adjacent short videos. Practically, when it comes to
multi-scene long video generation, existing works still per-
form poorly in terms of scene consistency, and fail to achieve
fine-grained control of camera-view transformations.

Text-to-Video Generation Guided by LLMs
Given the randomness of the content generated by diffusion
models, it is natural to provide some control information to
guide the generation process, which is already common in
text-to-image diffusion models (Zhang, Rao, and Agrawala



2023). However, for video generation, the control informa-
tion becomes very complex, potentially requiring descrip-
tions for every scene and even every frame in the video. Re-
cently, with the continuous development of LLMs, several
works (Lu et al. 2023; Lian et al. 2023; Long et al. 2024;
Lin et al. 2023) have started to explore video generation in
complex scenarios using LLMs as a breakthrough point.

LVD (Lian et al. 2023) uses LLMs to generate dynamic
scene layouts to assist diffusion models in video genera-
tion. This idea actually comes from LayoutGPT (Feng et al.
2024), which uses GPT (Achiam et al. 2023) to generate a
series of scene descriptions with multiple bounding boxes
based on user instructions. Similar works include FlowZero
(Lu et al. 2023), which also utilizes LLMs to parse instruc-
tions and generate dynamic scene layouts, introducing a self-
refinement process. VideoDirectorGPT (Lin et al. 2023),
based on ModelScopeT2V (Wang et al. 2023b), incorporates
scene descriptions and object layout information generated
by LLMs to improve the controllability of video generation.
However, the output multi-scene videos lack smooth transi-
tions, and the generated objects cannot be accurately con-
fined within the bounding boxes.

Other works take a different approach by using LLMs to
describe scenes rather than providing layouts. This is for
the reason that, in multi-scene video generation, merely pro-
viding layouts can become very complex, even for LLMs.
VideoDrafter (Long et al. 2024) uses LLMs to parse user in-
structions containing multiple scenes, generating a text de-
scription for each scene and a reference image for each en-
tity. However, the multi-scene videos generated by Video-
Drafter are disjointed, with abrupt transitions between ad-
jacent scenes. Free-Bloom (Huang et al. 2024) uses LLMs
to generate descriptions for each keyframe in the video,
employing joint denoising. Nevertheless, this approach is
also challenging in producing long multi-scene videos, as
the generation quality tends to degrade when the number of
frames increases.

Method
In this section, we will describe our proposed Modular-Cam
method. The overall framework is shown in Figure 2. It con-
tains a base video generator which is built upon AnimateD-
iff (Guo et al. 2023b), a CamOperator, an AdaControlNet,
and an LLM-Director. We will introduce a preliminary and
give some notations we will use in this paper first and then
detail each of the components in the following subsections.

Preliminary
Stable Diffusion Stable Diffusion (Rombach et al. 2022)
is a widely adopted model in T2I generation, which is open-
sourced and behaves very well, thus we choose it as the base
model in Modular-Cam. Stable Diffusion first utilizes a pre-
trained encoder E(·) and a pre-trained decoder D(·) to en-
code and decode the image x0 to and from the latent space,
i.e., z0 = E(x0) and x

′

0 = D(z0), respectively, performing
the diffusion process in the latent space. In the forward pro-
cess, the model will gradually add noise to z0, until we get

an approximate Gaussian noise zT :

zt =
√
ᾱtz0 +

√
1− ᾱtϵ, ϵ ∼ N (0, 1), (1)

where t = 1, 2, · · · , T represents the steps, and ᾱt stands
for the noise strength, ϵ is the added gaussian noise. The
process of gradually adding noise is actually a Markov chain
process, where we can learn to reverse it by predicting the
added noise using a denoising network ϵθ(·):

L = EE(x0),y,ϵ∼N (0,1)

[
||ϵ− ϵθ(zt, t, τθ(y)||22

]
, (2)

where y represents the text description corresponding to
image x0, which will be encoded by a CLIP text encoder
τθ(·) (Radford et al. 2021). The text information serves as an
input to guide the denoising process. To predict the specific
noise, Stable Diffusion utilizes the U-Net (Ronneberger, Fis-
cher, and Brox 2015) which consists of symmetrical encoder
and decoder. The encoder is responsible for capturing im-
age information, while the decoder is for merging the con-
trol information with the encoded information. Each net-
work block includes stacks of attention layers (Vaswani et al.
2017) and residual mechanism (He et al. 2016). The Base
Stable Diffusion model has a large number of parameters,
thus we often add LoRA (Hu et al. 2021) layers to finetune
it, instead of tuning all the parameters.

Task The main task of this paper is text-to-video gener-
ation, i.e., given a text prompt p and the desired length f ,
generating a series of video frames x1:f that satisfies the re-
quirements of the prompt. Since Stable Diffusion was orig-
inally designed for generating images, directly utilizing it
to generate videos will perform poorly due to the lack of
temporal information. Thus we adopt the widely used ap-
proach (Guo et al. 2023b) which inserts temporal trans-
former layers into the diffusion model to serve as our base
video generator.

Suppose we have a noisy latent z1:ft ∈ Rb×c×f×h×w,
where b, c, f , h, w represents the batch size, channel, frame,
height and width, respectively. After each pre-trained diffu-
sion layer, we insert a temporal transformer layer to capture
temporal information of the latents. Specifically, we first re-
shape it to z

(1:f)′

t ∈ Rf×(b×h×w)×c, and then we perform a
self-attention along the frames axis as follows:

zoutt = Attention(Query,Key, V alue)

= Attention(WQz
(1:f)
t

′
,WKz

(1:f)
t

′
,WV z

(1:f)
t

′
).
(3)

Then the latents are reshaped back and incorporated into the
original latents through residual connection. In this way, the
temporal transformer layers will adjust the frame vectors by
passing information temporally. We finetune the temporal
transformer layers while keeping the pre-trained Stable Dif-
fusion network layers fixed on large amounts of video data
to learn the continuity across frames.

CamOperator with Modular Network
After conducting the base generator, we further utilize Cam-
Operator, which is a series of tunable LoRA layers adding to
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Figure 2: Framework for our proposed Modular-Cam, which contains four modules, i.e., Base Video Generator, CamOpera-
tor, AdaControlNet, and LLM-Director. First, the LLM is utilized to parse the user instruction, decomposing it into multiple
scenes with descriptions. Then for each scene, a video generator is built, which has been integrated with CamOperator and
AdaControlNet. LLM will identify the camera-view transformation in each scene and select from the MotionPool to plug in
the appropriate CamOperator Module, which will enable the output video to follow the specific motion pattern, i.e., ZoomIn. A
condition image, that is the ending frame of the last scene, is inputted into the AdaControlNet, which will guide the generation
of the current scene. Finally, the video clips for each scene are concatenated orderly to form the final multi-scene dynamic
camera-view video.

the temporal transformer layers, to control the camera move-
ments such as PanLeft and ZoomIn. We finetune different
sets of LoRA parameters for each motion pattern, using gen-
erated simulated video data that follow the specific pattern
while keeping all the other parameters fixed:

W = WTT +∆WCO = WTT +ACO × BT
CO, (4)

where W with subscript TT and CO represents parameters
for the temporal transformer layer and CamOperator, respec-
tively, and ACO and BCO are the low-rank matrix decompo-
sitions of ∆WCO. We simulate the training data with such
patterns using data augmentations. For example, for pattern
ZoomIn, we gradually reduce the video screen size, so that
the objects in the video are slowly enlarged, thus creating
a zooming-in effect. In this way, we derive CamOperator
Module Pool for six basic motion patterns, that is Motion =
{ZoomIn,ZoomOut,PanLeft,PanRight,TiltUp,TiltDown}.

As these modules are trained individually, they can be
plugged into the model independently. This modular ap-
proach greatly enhances the scalability of the model, for we
can train any number of CamOperators at any time. More-
over, due to the low-rank property, these basic modules can

be composed to form more complicated motions, such as
PanLeft and ZoomIn. Thus by decomposing the complicated
camera movements into basic ones, we can theoretically
simulate any motion pattern in the generated video.

AdaControlNet with Randomized Blending
In the above subsections, we build a complete model for
single-scene video generation while the camera movements
can be finely controlled. To generate videos with multiple
scenes, we propose AdaControlNet and generate videos in
an autoregressive manner, which utilizes the ending frame
of the last scene as the condition image for current scene
generation. However, simply using the controlnet will suf-
fer from the abrupt transitions and the color distortions be-
tween adjacent scenes in the video. To solve the problem,
we perform an adaptive pixel normalization to the control-
net which adjusts the color tone between different scenes. To
further enhance the consistency between the starting frame
of the video clip for the current scene and the ending frame
of the last scene, we utilize a randomized blending technique
inspired by (Avrahami, Lischinski, and Fried 2022). Thus,
the generated multi-scene video can satisfy the semantic re-



quirements while having excellent consistency.
First, we duplicate the structure and parameters of the

encoder in the U-Net as our AdaControlNet. Similarly, we
apply the temporal attention mechanism into the AdaCon-
trolNet so that the condition image will not only affect the
starting frame but influence the rest frames as well. And we
replace the input of the AdaControlNet from the concatena-
tion of the encoded condition image and noisy latent z1:ft to
the encoded condition image alone, to remove the harming
effects of z1:ft on the AdaControlNet. We derive our training
data by selecting the first frame of the video data as the con-
dition image and finetune the AdaControlNet while keeping
all the other parameters fixed.

We find that simply using the Controlnet can ensure the
consistency of objects and layouts across multiple scenes,
but the color tone of the generated video may drift from
the condition image, i.e., become darker or lighter. Visu-
ally, such a difference is easily recognized by the naked
eye, which reduces the authenticity of the generated video.
Therefore, we perform an adaptive pixel normalization
which adjusts the mean and variance of the three color chan-
nels (RGB) of the generated video on the pixel-level to make
it consistent with the condition image:

framech =
framech − framechmean

framechstd
·condchstd+condchmean,

(5)
where frame and cond represent a frame image or a con-
dition image. Superscript ch stands for color channel ∈
{R,G,B}. Additionally, we propose to use randomized
blending to further unify the color tone of the generated
video:

z1t =

{
zcondt , if random (0, 1) < λ

z1t , otherwise,
(6)

where z1t and zcondt represent the tth noisy latent for the
first frame of the current scene and the condition image.
random(0, 1) generates a random number uniformly dis-
tributed in (0, 1), and λ is a hyper-parameter controlling
the intensity of randomized blending. The essence is that z1t
will receive zcondt with the probability λ. We can derive that
larger λ will introduce more blending, thus the first frame
will be more like the condition image, improving consis-
tency. However, frequent blending will reduce the continu-
ity between the first frame and the rest. On the other hand,
a small λ will encourage free generation, which improves
overall continuity. In practical inference, we set λ to 0.5.

By combining the two techniques of adaptive pixel nor-
malization and random blending during inference, the tran-
sitions between scenes become smooth, and the multi-scene
video maintains the consistency of color tone and content.

LLM Director with Modularized Motion Selection
Integrating AdaControlNet, we can now generate a multi-
scene dynamic camera-view video. However, for a compli-
cated multi-scene involved user instruction, the scene de-
scription or transition action may not be given directly, and
the video generation model cannot automatically extract all

the information. Therefore, we utilize LLM to parse user in-
struction, decomposing it into different scenes, and extract
the transition actions between adjacent ones. LLM is like a
director, guiding the video generation model in producing
multi-scene videos.

Take the user instruction “Starting with a long shot of a
field and blue sky, and gradually focusing on a house in the
distance. Then the camera moves to the left, and large fields
appear, then the house moves out of view” as an example,
which has two scenes. We design the prompt:

• ”Extract the scenes that appear in the given text in or-
der, and identify the transition actions between adjacent
scenes. The scene description should contain rich infor-
mation. You should pick the transition action from [Zoom
In, Zoom Out, Pan Left, Pan Right, Tilt Up, Tilt Down]”.

LLM will analyze the user instruction, decomposing it
into the two scenes and output to the specific format for the
video generation model to receive:

[Scene1 : “field and blue sky, house in the distance”,
Action : ZoomIn]
[Scene2 : “large fields”, Action : PanLeft].

(7)

For Scene1, our video generator will select and integrate
ZoomIn CamOperator Module to generate a single scene
video. And for Scene2, our video generator will select the
last frame of Scene1 as a condition image and integrate
PanLeft CamOperator Module for the generation. The final
video is derived by concatenating video clips for Scene1 and
Scene2.

Note that although LLM is not directly involved in spe-
cific video generation, it still plays an indispensable role,
just like what an excellent director can bring to a film. If
we input the user instruction directly to the video genera-
tion model without LLM parsing, the scenes in the generated
video will be mixed.

Thus, we get Modular-Cam, capable of generating dy-
namic camera-view transformations and multi-scene long
videos based on complex user instructions.

Experiment
In this section, we first detail on the specific setting of the
training and testing of our proposed Modular-Cam, and con-
duct extensive quantitative and qualitative experiments to
demonstrate the strong generating ability of our model. We
further conduct some ablation studies to verify the effective-
ness of each module.

Experiment Setup
We use the large-scale public video dataset WebVid-
10M (Bain et al. 2021) as our training set to train the newly
inserted temporal transformer layers. For CamOperator, we
simulate and generate about 50 videos with specific motion
patterns to finetune the LoRA layers. For AdaControlNet,
we select 100,000 videos from WebVid-10M as the train-
ing set, with the starting frame as the condition image. The
whole training procedure can be found in the Appendix.



Model MS(↑) DD(↑) IQ(↑) CLIP(↑) UR(↓)

AnimateDiff 0.983 0.329 0.622 0.171 3.8
FreeNoise 0.986 0.302 0.618 0.171 3.7
SparseCtrl 0.952 0.677 0.524 0.208 3.5

StreamingT2V 0.974 0.907 0.350 0.224 2.3

Modular-Cam 0.988 0.994 0.546 0.232 1.7

Table 1: Quantitative comparison between Modular-Cam
and other baselines, where MS, DD and IQ stands for Mo-
tion Smoothness, Dynamic Degree and Imaging Quality,
respectively, and UR represents User Rank, a user evalu-
ation metric. The top and second top performances have
been bolded or underlined, respectively. ↑ represents that the
higher the metric, the better, while ↓ represents the opposite.

In the inference stage, since our work mainly focuses on
multi-scene dynamic camera-view video generation, current
instruction sets, which mostly contain simple single-scene
instructions, cannot satisfy our requirements. Therefore, in
quantitative comparison, we adopt a self-generated dataset,
which contains 1000 multi-scene involved instructions. We
use ChatGPT3.5-turbo (Achiam et al. 2023) to auto-generate
the dataset, ensuring that each instruction has at least two
scenes with guidance on camera-view transformations.

We compare Modular-Cam with the baselines in terms
of five metrics, i.e., Motion Smoothness(MS), Dynamic De-
gree(DD), Imaging Quality(IQ), CLIP Metric and User
Rank(UR). The detailed information of the employed met-
rics can be found in the appendix.

Main Results
We conduct quantitative and qualitative comparisons and
demonstrate the results in Table 1 and Figure 3. In quantita-
tive comparison, we can observe that Modular-Cam outper-
forms the other baselines in most of the metrics, no matter
computed or manually evaluated, and is only slightly lower
than AnimateDiff and FreeNoise under IQ, which may be at-
tributed to the trade-off between content richness and qual-
ity, since Modular-Cam generates a complicated video with
multi-scenes and camera-view transformations, and is rel-
atively harder to maintain the same-level quality. In terms
of Dynamic Degree, Modular-Cam is much higher than the
other baselines, validating its superior dynamic camera-view
generating ability. StreamingT2V also focuses on multi-
scene video generation and performs similarly to Modular-
Cam in terms of CLIP Metric and MS. However, it falls be-
hind in UR and DD, and drops drastically on IQ.

In qualitative comparison, we evaluate Modular-Cam and
other baselines based on the same user instruction, that is
“Starting with a close up shot of the flowers in the meadow,
the camera slowly moves to the right to focus on the moun-
tain peaks in the distance and gradually draws in closer. The
camera then continues to move to the right as the moun-
tain and the lake mirror each other”. The results are shown
in Figure 3. The instruction can be decomposed into three
scenes, i.e., close up shot of the flowers in the meadow,

(a) AnimateDiff generated results.

(b) FreeNoise generated results.

(c) SparseCtrl generated results.

(d) StreamingT2V generated results.

(e) Modular-Cam generated results.

Figure 3: Qualitative comparison between Modular-Cam
and other baselines. We select several intermediate frames
of the whole video for the convenience of presentation.

gradually focus on the mountain in the distance and moun-
tain and lake mirror each other, with transition actions Pan-
Right, ZoomIn and PanRight, respectively. We can observe
that the videos generated by AnimateDiff, FreeNoise and
SparseCtrl are almost static in motion, especially in results
generated by FreeNoise, the frames change completely in
the later stage, potentially affected by the ZoomIn instruc-
tion, while StreamingT2V displays abrupt transitions, with
mixed scenes in the end, i.e., mountain and flower. On the
other hand, the video outputted by Modular-Cam best fol-
lows the user instructions, generating all the objects cor-
rectly and performing the right camera-view transforma-
tions. Additional results can be found in the Appendix.

Ablation Studies
In this subsection, we validate the effectiveness of the pro-
posed modules through a series of ablation studies.

AdaControlNet Due to the misalignment of data distribu-
tions in training and inference, color tone shifting usually
occurs in the generated results of diffusion models (Song
and Ermon 2020). Therefore, we propose to use Adaptive
pixel normalization and Randomized blending to mitigate
the shifting problem. From the results in Figure 4, we can
observe that without Randomized blending, the frames be-
come slightly whiter or darker, as has been marked with the
red frame, while without Adaptive pixel normalization, the
frames overall obviously turn darker. The change of color
tone, even the smallest, may possibly be recognized by the



(a) Condition. (b) Original. (c) w/o. RB. (d) w/o. Ad.

(e) Condition. (f) Original. (g) w/o. RB. (h) w/o. Ad.

Figure 4: Ablation study on adjusting the color tone, where
Original represents the generated results of Modular-Cam,
and RB and Ad stands for Randomized blending and Adap-
tive pixel normalization, respectively. We remove the two
techniques and display the first frame of each generated
video compared with the condition image, where areas with
color tone shifting are marked with red frames.

(a) Video generated with LLM decomposing multi-scene.

(b) Video generated directly using the multi-scene user instruction.

Figure 5: Ablation study on LLM decomposing user instruc-
tion. In Modular-Cam, the instruction is first parsed and de-
composed by LLM then be fed to the video generator, while
in Figure 5b, we display the generated result of video gener-
ator directly utilizing the multi-scene involved instruction.

naked eye, thus destructing the general realism. Utilizing
the two techniques, the generated results of Modular-Cam
showcase the most aligned color tone, which enhances the
authenticity of the generated video.

LLM-Director To illustrate the important role of LLM
decomposing multi-scene involved instructions, we design a
simple prompt “Beginning with a scene of fields and houses,
the camera gradually moves to the left, the houses move out
of view, and large fields appear”, which consists of only two
scenes, with transition action PanLeft. We parse it with LLM
and obtain the decomposed two scenes as fields and house
and large fields, in which we can find that the LLM has un-
derstood the instruction to remove the object house out of
the second scene, avoiding confusing the video generator.
We compare it with the generated video of directly utilizing
the undecomposed instruction, i.e., the description for each
scene is the original multi-scene user instruction. The results
are in Figure 5. We can observe that in Figure 5b, mixed

(a) Condition.

(b)
λ = 0.25
1stframe.

(c)
λ = 0.25
2ndframe.

(d)
λ = 0.5
1stframe.

(e)
λ = 0.5

2ndframe.

(f)
λ = 0.75
1stframe.

(g)
λ = 0.75
2ndframe.

(h)
λ = 1.0
1stframe.

(i)
λ = 1.0

2ndframe.

Figure 6: Sensitivity analysis on the λ introduced in random-
ized blending. Here we only display the 1st and 2nd frame of
the generated results for specific value of λ. We mark the
areas where inconsistent color tone or transition gap occurs
with red frame.

scenes occur in scene 2, where objects similar to house ap-
pear again in the scene, as has been marked with the red
frame, which is contrary to the move out of view instruction,
while in Figure 5a only large fields remain, showcasing the
strong comprehension capability brought by the LLM.

Parameter Sensitivity
In Equation 6, we introduce a hyper-parameter λ to control
the intensity of randomized blending. We determine the op-
timal value of λ through sensitivity analysis. Since random-
ized blending only directly impact on the 1st frame, we can
judge the continuity and consistency of the video by com-
paring the 1st frame with the condition image and the 2nd

frame, which represents the rest of the video, respectively.
From Figure 6, we can observe that small λ reduces consis-
tency with the condition image in terms of color tone, while
large λ results in transition gap between the 1st frame and
the rest of the video, where misaligned shapes and positions
of objects occur, which confirms our presumption. Exper-
imentally, we find that λ = 0.5 achieves the best balance
between the continuity within a single scene and the consis-
tency across multiple scenes.

Conclusion
In this work, we present a novel method called Modular-
Cam, which is able to generate multi-scene dynamic camera-
view video, overcoming the limitations of existing works,
which either output videos that are almost static, with-
out much motion dynamics, or produce severe gaps be-
tween adjacent scenes. We propose three modules to address
these problems, namely CamOperator, AdaControlNet, and
LLM-Director, to enhance the consistency across multiple
scenes and provide fine-grained control of camera move-
ments, where we utilize modular network to learn each mo-
tion pattern and take advantage of LLM’s understanding ca-
pacity to guide the video generation. Extensive experiments
verify the strong generating ability of Modular-Cam and the
effectiveness of each proposed module.
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